La Agencia Espacial Europea (ESA) es un punto de lanzamiento desde cabo Cañaveral (Florida) a cohete Falcon 9 portando el telescopio espacial euclides. La misión de este nuevo observatorio consistirá en estudiar los componentes más esquiva del universo: materia oscura y energía oscura.

Un mes después del lanzamiento, Euclid orbitará el segundo Punto de Lagrange Sol-Tierra (L2), a un millón y medio de kilómetros de nuestro planeta. Se trata de una ubicación privilegiada donde las gravitatorias del Sol y la Tierra se “equilibran”. Una vez allí, su parasol bloqueará la luz procedente del Sol, la Tierra y la Luna, para asegurar un alto nivel de estabilidad en sus instrumentos.

Mientras, Euclid vendrá a descubrir hacia el cielo profundo en un intento por desentrañar parte de los misterios que aún entraña el universo. Compañará en esta posición al Telescopio espacial James Webbperfecto Compañero de viaje en esta nueva y apasionante era espacial.

Materia oscura y energía oscura

Resulta cuanto no menos curioso que todo aquello que hemos descubierto en el universo (desde nuestro Solar hasta las galaxias más lejanas) está formado por materia ordinaria: partículas elementales como protones, electrones y quarks que se unen para formar átomos. Sin embargo, esta materia observable constituye exclusivamente el 5% del cosmos.

Cabe Plantearnos, entonces, la siguiente pregunta: ¿en qué consiste el 95% restante de universo oscuro que aun permanece invisible para nosotros? Y aún más, ¿cuáles son las evidencias de ese 95% de materia o energía desconocida en el cosmos?

Empezando por la última de las cuestiones, los científicos se dieron cuenta de varios hechos significativos. Por un lado, las estrellas que orbitan alrededor de sus centros galácticos se mueven a más velocidad de la esperada (es decir, cuando sólo se tiene en cuenta la materia ordinaria “que podemos ver”). Por otro lado, esta materia «observable» por sí sola no puede aportar suficiente gravedad para mantener agrupaciones de galaxias.

Es entonces cuando entró en juego una especie de material invisible que ni emite ni refleja la luz y que formó el 25% del universo: materia oscura.

¿Cómo podemos detectar la materia oscura?

Un método muy empleado por los astrónomos (y que podría utilizarse para detectar materia oscura) se basa en el efecto relativista denominado lento gravitacional. Cuando una concentración de materia se encuentra en nuestra línea de visión puede actuar como una lupa, distorsionando la luz de las galaxias detrás de ella.

In las gravitacionales fuertes slow (debidas a la presencia de objetos muy masivos como cumulos galácticos o agujeros negros), las deformaciones galácticas son muy evidentes. La siguiente animación describe este efecto cuando un agujero negro se mueve delante de un fondo galáctico.

Cuando las distorsiones de las fuentes de fondo son de menor magnitud hablamos de lupa gravitacional débil. En este caso, las deformaciones por sí solas pueden detectar un gran número de fuentes de formas estadísticas.

En este sentido, el telescopio espacial Euclid mediará la forma distorsionada de los billones de galaxias y elaborará el mapa 3D más detallado y preciso: los científicos podrán deducir cómo se distribuye la materia oscura en el cosmos.

¿Y dónde queda entonces el 70 % de ese universo oscuro?

Se cree que ese 70% está formado por la denominada energía oscura, una especie de «fuerza invisible» no detectada hasta la fecha y que esclararía por que la expansión del universo durando los últimos cinco mil millones de años se ha acelerado más rápido de lo esperado.

Euclides mapeará los últimos 11.700 millones de años de historia cósmica, justo en este momento en el que el cabildo de las estrellas estaba formando. Ello permitirá estudiar con una precisión extraordinaria cómo ha cambiado la aceleración del universo en ese período.

Los instrumentos a bordo del Euclid

Al igual que los telescopios espaciales Hubble o James Webb, Euclid pertenece al tipo de reflectores telescópicos. Esto significa que utiliza espejos para enfocar la luz y producir imágenes. Su espejo primario mide 1,2 metros de diámetro (la mitad que el Hubble y unas 5 veces menor que el Webb) y su peso en órbita será de unas 2 toneladas.

Con estas características, Euclid logrará abarcar la tercera parte del cielo y medir la forma, posición y distancia de galaxias a 10.000 millones de años luz de nosotros. Además, elaborar un detallado mapa tridimensional del cosmos.

Por ello, Euclid cuenta a bordo con los instrumentos VIS y NISP qu’analyzarán, respectivamente, la luz visible e infrarroja del universo primitivo:

  1. La cámara VIS registrará la luz visible desde los 550 nanómetros (color verde-amarillento) hasta el rojo más extremo. Este está compuesto por un mosaico de 36 sensores CCD con una capacidad de resolución de 16 megapíxeles cada uno. Obtendrá imágenes muy nítidas de las galaxias, lo que permitirá medir su formación con precisión.

  2. El instrumento NASP opera en el infrarrojo cercano (al igual que el James Webb) y cuenta con 16 detectores de 4 megapixeles cada uno. El NASP medirá el brillo y la intensidad de la luz emitida por galaxias lejanas y permitirá conocer sus distancias (mediante el efecto conocido como desplazamiento hacia el rojo). Además, obtendrá el mayor campo de visión en el rango del infrarrojo desde el espacio (cientos de veces mayor que el Webb).

Lo qu’Euclid podrá revelar el universo

Este nuevo observatorio espacial podrá responder cuestiones sobre la naturaleza de la materia y energía oscura, el cambio en la aceleración del universo o, incluso, si la teoría general de la relatividad de Einstein est valida a escalas mayores del cosmos.

Una vez listo, Euclid se embarcó en un estudio de cinco años con un equipo de 2000 científicos de todo el mundo para recopilar datos. No tarea será baladí, pues el análisis de esta ingente cantidad de datos podría llevar a cabo otros cinco años más. Es decir, habrá que esperar casi una década para obtener resultados.

noticias relacionadas

Mientras, el telescopio espacial Euclid (en honor al matematico griego Euclides, capellán de la geometrie) intentará desentrañar ese fascinante universo oscuro, todavía invisible para nosotros.

Este artículo fue publicado originalmente en La conversación. leah el original.